Simulation of in vivo dynamics during robot assisted joint movement
نویسندگان
چکیده
BACKGROUND Robots are very useful tools in orthopedic research. They can provide force/torque controlled specimen motion with high repeatability and precision. A method to analyze dissipative energy outcome in an entire joint was developed in our group. In a previous study, a sheep knee was flexed while axial load remained constant during the measurement of dissipated energy. We intend to apply this method for the investigation of osteoarthritis. Additionally, the method should be improved by simulation of in vivo knee dynamics. Thus, a new biomechanical testing tool will be developed for analyzing in vitro joint properties after different treatments. METHODS Discretization of passive knee flexion was used to construct a complex flexion movement by a robot and simulate altering axial load similar to in vivo sheep knee dynamics described in a previous experimental study. RESULTS The robot applied an in vivo like axial force profile with high reproducibility during the corresponding knee flexion (total standard deviation of 0.025 body weight (BW)). A total residual error between the in vivo and simulated axial force was 0.16 BW. Posterior-anterior and medio-lateral forces were detected by the robot as a backlash of joint structures. Their curve forms were similar to curve forms of corresponding in vivo measured forces, but in contrast to the axial force, they showed higher total standard deviation of 0.118 and 0.203 BW and higher total residual error of 0.79 and 0.21 BW for posterior-anterior and medio-lateral forces respectively. CONCLUSIONS We developed and evaluated an algorithm for the robotic simulation of complex in vivo joint dynamics using a joint specimen. This should be a new biomechanical testing tool for analyzing joint properties after different treatments.
منابع مشابه
Improvement of position measurement for 6R robot using magnetic encoder AS5045
Recording the variation of joint angles as a feedback to the control unit is frequent in articulated arms. In this paper, magnetic sensor AS5045, which is a contactless encoder, is employed to measure joint angles of 6R robot and the performance of that is examined. The sensor has a low volume, two digital outputs and provides a high resolution measurement for users; furthermore its zero positi...
متن کاملDirect adaptive fuzzy control of flexible-joint robots including actuator dynamics using particle swarm optimization
In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID control law. One novelty of this paper is the use of a PSO algorithm for optimizing the contro...
متن کاملRobust Fractional Order Control of Under-actuated Electromechanical System
This paper presents a robust fractional order controller for flexible-joint electrically driven robots under imperfect transformation of control space. The proposed approach is free from manipulator dynamics, thus free from problems associated with torque control strategy in the design and implementation. As a result, the proposed controller is simple, fast response and superior to the torque c...
متن کاملRobust Fractional Order Control of Under-actuated Electromechanical System
This paper presents a robust fractional order controller for flexible-joint electrically driven robots under imperfect transformation of control space. The proposed approach is free from manipulator dynamics, thus free from problems associated with torque control strategy in the design and implementation. As a result, the proposed controller is simple, fast response and superior to the torque c...
متن کاملHuman Gait Control Using Functional Electrical Stimulation Based on Controlling the Shank Dynamics
Introduction: Efficient gait control using Functional Electrical Stimulation (FES) is an open research problem. In this research, a new intermittent controller has been designed to control the human shank movement dynamics during gait. Methods: In this approach, first, the three-dimensional phase space was constructed using the human shank movement data recorded from the healthy subjects. Then...
متن کامل